Search results for "cysteine arylation"
showing 2 items of 2 documents
Exploring the Chemoselectivity towards Cysteine Arylation by Cyclometallated Au III Compounds: New Mechanistic Insights
2020
To gain more insight into the factors controlling the efficient cysteine arylation by cyclometalated Au(III) complexes, the reaction between selected gold compounds and different peptides was investigated by high‐resolution liquid chromatography electrospray ionization mass spectrometry (HR‐LC‐ESI‐MS). The deducted mechanisms of C–S cross‐coupling, also supported by density functional theory (DFT) and quantum mechanics/molecular mechanics (QM/MM) calculations, evidenced the key role of secondary peptidic gold binding sites in favouring the process of reductive elimination.
Cyclometalated Au(III) Complexes for Cysteine Arylation in Zinc Finger Protein Domains: Towards Controlled Reductive Elimination
2019
With the aim of exploiting the use of organometallic species for the efficient modification of proteins through C-atom transfer, the gold-mediated cysteine arylation through a reductive elimination process occurring from the reaction of cyclometalated AuIII C^N complexes with a zinc finger peptide (Cys2His2 type) is here reported. Among the four selected AuIII cyclometalated compounds, the [Au(CCON)Cl2] complex featuring the 2-benzoylpyridine (CCON) scaffold was identified as the most prone to reductive elimination and Cys arylation in buffered aqueous solution (pH 7.4) at 37 °C by high-resolution LC electrospray ionization mass spectrometry. DFT and quantum mechanics/molecular mechanics (Q…